Ethanol
It is the principal type of alcohol found in alcoholic beverages and is also used as a fuel, solvent, and disinfectant.
Ethanol is produced by the fermentation of sugars and has numerous industrial and medicinal applications.
Researchers can now optimize their ethanol research with PubCompare.ai's AI-driven platform, which allows them to compare protocols across literature, boost reproducibility and acuracy, and explore relevant kits.
This platform offers a streamlined, data-driven approach to ethanol research, helping scientists enhance the efficiency and quality of their studies.
Most cited protocols related to «Ethanol»
Most recents protocols related to «Ethanol»
Example 14
Compound I calcium salt EtOH solvate Form C was obtained via slurry of Compound I calcium salt amorphous form in EtOH/H2O (9:1, v:v) at room temperature.
A. X-Ray Powder Diffraction
XRPD on Compound I calcium salt EtOH solvate Form C was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 2 theta position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt EtOH solvate Form C is shown in
Example 11
Compound I calcium salt hydrate Form G was obtained via fast cooling of Compound I calcium salt hydrate Form A solution in EtOH:H2O (v:v, 90:10).
A. X-Ray Powder Diffraction:
XRPD was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 2 theta position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt hydrate Form G is shown in
Example 13
Compound I calcium salt EtOH solvate Form B was obtained via temperature cycling between 60° C. and 5° C. with cooling rate of 0.2° C./min of Compound I calcium salt hydrate Form A in EtOH: n-heptane (1:1, v:v).
A. X-Ray Powder Diffraction
Compound I calcium salt EtOH solvate Form B XRPD was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 2 theta position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt EtOH solvate Form A is shown in
Example 37
To improve inhibition potency relative to FAAH, various portions of the t-TUCB molecule were modified to identify potential FAAH pharmacophores. The 4-trifluoromethoxy group on t-TUCB was modified to the unsubstituted ring (A-3), 4-fluorophenyl (A-2) or 4-chlorophenyl (A-26). Potency on both sEH and FAAH increased as the size and hydrophobicity of the para position substituent increased, with 4-trifluoromethoxy being the most potent on both enzymes. Substituting the aromatic ring for a cyclohexane (A-3) or adamantane (A-4) resulted in a complete loss in activity against FAAH. Results are summarized in Table 1 below.
Next, the center portion of the molecule was modified to further investigate the specificity of t-TUCB on FAAH. Switching the cyclohexane linker to a cis conformation (A-5) resulted in a 20-fold loss of potency while removing the ring and replacing it with a butane chain (A-6) resulted in a completely inactive compound. While this suggests the compound must fit a relatively specific conformation in the active site to be active, we found the aromatic linker had essentially the same potency on FAAH (A-7). Although many potent urea-based FAAH inhibitors have a piperidine as the carbamoylating nitrogen, the modification to piperidine here reduced potency 13-fold. Results are summarized in Table 2 below.
Since none of the modifications at this point improved potency towards FAAH, we focused on the benzoic acid portion of the molecule as shown in Table 3. To determine the importance of the terminal acid, the corresponding aldehyde (A-20) and alcohol (A-24) in addition to the amide (A-19) and nitrile (A-11) were tested. While the amide had slightly improved potency, the more reduced forms of the acid (A-20 and A-24) and amide (A-11) had substantially less activity on FAAH. Converting the benzoic acid to a phenol (A-21) increased potency while the anisole (A-22) was completely inactive. Since the amide and acid appeared to be active, the amide bioisostere oxadiazole (A-25) was tested and had 38-fold less potency than the initial compound.
Since the substrates for FAAH tend to be relatively hydrophobic lipids, we speculated that conversion of the acid and primary amide to the corresponding esters or substituted amides would result in improved potency. The methyl ester (A-12) had 4-fold improved potency relative to the acid. Improving the bulk of the ester with an isopropyl group (A-13) results in a 11-fold loss in potency relative to the methyl ester. However, the similar potency of the benzyl ester (A-14) to the methyl ester demonstrates the bulk but not the size affects potency. Reversing the orientation of the ester (A-23) reduces the potency 3.4-fold. Relative to the primary amide, the methyl (A-18), ethanol (A-15) and glycyl (A-16) amides were all slightly less potent; however, the benzyl amide (A-27) was substantially less potent (16-fold). Generating the methyl ester of the glycyl amide (A-17) increased the potency 4-fold compared to the corresponding acid.
Example 7
Table 7 showed an improved stability of the disinfectant formulations upon including ethanol as a stabilizing agent in the formulations, wherein the disinfectant formulations comprised a mixture of lactic acid and formic acid as the C1-8 organic acids, and sodium sarcosinate as the amino acid based surfactant. Formulation Q, which did not include any ethanol stabilizing agent, was an unstable cloudy solution that resulted in a phase separation. Upon including ethanol stabilizing agent in the formulations (Formulations R and S), the stable clear solutions were achieved.
Top products related to «Ethanol»
More about "Ethanol"
It is the primary type of alcohol found in alcoholic beverages and has numerous industrial and medicinal applications.
Ethanol can be produced through the fermentation of sugars, making it a widely used fuel, solvent, and disinfectant.
Researchers can leverage related terms like Whatman filter paper, TRIzol reagent, Propidium iodide, and Bovine serum albumin to enhance their ethanol-based studies.
PubCompare.ai's AI-driven platform offers a streamlined, data-driven approach to ethanol research, allowing scientists to compare protocols across literature, boost reproducibility and accuracy, and explore relevant kits like the RNeasy Mini Kit or DMSO to optimize their work.
By harnessing the power of PubCompare.ai, researchers can elevate the efficiency and quality of their ethanol-focused studies, driving meaningful discoveries and advancing the field.
Explore the platform now and take your ethanol research to new heights.