Hydrolysis
This process is fundamental to many biological and industrial applications, including the breakdown of complex carbohydrates, proteins, and other macromolecules.
Optimizing hydrolysis protocols through AI-driven platforms like PubCompare.ai can enhance reproducibility, accuracy, and exploration of kits for enhanced hydrlysis research.
By comparing hydrolysis methods across literature, preprints, and patents, researchers can identify the most effective approaches and improve the reliability of their findings.
Most cited protocols related to «Hydrolysis»
Although Klason is generally credited as being the first to use sulfuric acid for lignin analysis, Sherrard and Harris (11 ) credit the use of sulfuric acid to Fleschsig in 1883, Ost and Wilkening in 1912, and König and Rump in 1913. According to Harris (12 ), Fleschsig, in 1883, dissolved cotton cellulose and converted it nearly quantitatively into sugars using strong sulfuric acid followed by dilution and heating. According to Browning (13 ), Ost and Wilkening introduced the use of 72 wt % sulfuric acid for lignin determinations in 1910. A translated paper by Heuser (14 ) credited König and Ost and Wilkening for the sulfuric acid lignin method. Dore (15 ) described several improved analytical methods (cellulose, lignin, soluble pentosans, mannan, and galactan) for the summative analysis of coniferous woods. The discrepancies in attribution may be due to differing definitions for the method cited (e.g., first to use acid to determine lignin, first to use sulfuric acid, first to use 72 wt % sulfuric acid, etc.) and to missed citations across continental distances in the early 20th century.
Subsequently, we focused on the distribution of reads that map to transcripts without alternatively processed forms. To define such transcripts, we considered a standard reference annotation of the transcriptome, i.e. the SGD annotation for yeast (31 (link)), the TAIR annotation for cress (32 (link)) and the murine as well as the human RefSeq annotation (33 (link)). This procedure provided us with mappings for 6 606 768 reads (47%) from yeast, 351 336 reads (65%) from cress and for 21 359 481 reads (68%) from mouse, and with 530 996 reads that map in proper pairs to the spike-in control sequences. Due to substantially different data set sizes (90 million versus 13 million reads), in the case of the human FRT- and the STD-Seq experiments, we extracted subsets of reads of suitable size before mapping to ensure comparability (
Most recents protocols related to «Hydrolysis»
Example 8
Characterization of Absorption, Distribution, Metabolism, and Excretion of Oral [14C]Vorasidenib with Concomitant Intravenous Microdose Administration of [13C315N3]Vorasidenib in Humans
Metabolite profiling and identification of vorasidenib (AG-881) was performed in plasma, urine, and fecal samples collected from five healthy subjects after a single 50-mg (100 μCi) oral dose of [14C]AG-881 and concomitant intravenous microdose of [13C3 15N3]AG-881.
Plasma samples collected at selected time points from 0 through 336 hour postdose were pooled across subjects to generate 0—to 72 and 96-336-hour area under the concentration-time curve (AUC)-representative samples. Urine and feces samples were pooled by subject to generate individual urine and fecal pools. Plasma, urine, and feces samples were extracted, as appropriate, the extracts were profiled using high performance liquid chromatography (HPLC), and metabolites were identified by liquid chromatography-mass spectrometry (LC-MS and/or LC-MS/MS) analysis and by comparison of retention time with reference standards, when available.
Due to low radioactivity in samples, plasma metabolite profiling was performed by using accelerator mass spectrometry (AMS). In plasma, AG-881 was accounted for 66.24 and 29.47% of the total radioactivity in the pooled AUC0-72 h and AUC96-336 h plasma, respectively. The most abundant radioactive peak (P7; M458) represented 0.10 and 43.92% of total radioactivity for pooled AUC0-72 and AUC96-336 h plasma, respectively. All other radioactive peaks accounted for less than 6% of the total plasma radioactivity and were not identified.
The majority of the radioactivity recovered in feces was associated with unchanged AG-881 (55.5% of the dose), while no AG-881 was detected in urine. In comparison, metabolites in excreta accounted for approximately 18% of dose in feces and for approximately 4% of dose in urine. M515, M460-1, M499, M516/M460-2, and M472/M476 were the most abundant metabolites in feces, and each accounted for approximately 2 to 5% of the radioactive dose, while M266 was the most abundant metabolite identified in urine and accounted for a mean of 2.54% of the dose. The remaining radioactive components in urine and feces each accounted for <1% of the dose.
Overall, the data presented indicate [14C]AG-881 underwent moderate metabolism after a single oral dose of 50-mg (100 μCi) and was eliminated in humans via a combination of metabolism and excretion of unchanged parent. AG-881 metabolism involved the oxidation and conjugation with glutathione (GSH) by displacement of the chlorine at the chloropyridine moiety. Subsequent biotransformation of GSH intermediates resulted in elimination of both glutamic acid and glycine to form the cysteinyl conjugates (M515 and M499). The cysteinyl conjugates were further converted by a series of biotransformation reactions such as oxidation, S-dealkylation, S-methylation, S-oxidation, S-acetylation and N-dealkylation resulting in the formation multiple metabolites.
A summary of the metabolites observed is included in Table 2
EXAMPLE 8
Rhizopus oryzae (RO) lipase was covalently bound to acrylic beads and contained in a device resembling a teabag. Enfalac infant formula (25 g) was combined with tap water (88 mL) at 37° C. Reactions were carried out in a glass bottle with 100 mL of infant formula and a tea bag containing either 100, 500, 1000, or 2000 mg of immobilized RO lipase. Each reaction was incubated at 37° C. for 30 minutes with inversion. Samples were taken at the following timepoints: 0, 1, 2, 3, 4, 5, 10, 20, and 30 minutes. Samples were analyzed for DHA and ARA by reverse phase high performance liquid chromatography (RP-HPLC).
At each concentration of immobilized RO lipase, the percent hydrolysis of DHA and ARA increased as the amount of immobilized RO lipase increased (FIGS. 27A-27D). These data demonstrate the feasibility of the tea bag device for pre-hydrolyzing formula with lipase.
Example 4
Experiments were performed in 100 ml Kautex bottles. Model waste was mixed with water to a volume at 50 ml and at TS concentration of 7.5%. CBC and the selected blend (B.a protease:T.I pholip:A.a BG:CBC in ratio of 10:5:15:70) were added in amounts corresponding to 0%, 25%, 50%, 75%, 100% and 200% of the concentration that has been used as default during the previous experiments (2.4% enzymes protein/TS). Bottles were incubated on a Stuart Rotator SB3 and placed in a 50° C. oven for 24 hours.
A significant improvement in TS-solubilization was seen at all applied enzyme concentrations, when comparing the blend with CBC. The TS-solubilization at default settings (2.4% CBC/TS) was around 25%. This was obtained with only approximately 0.9% of the blend, which corresponds to a lowering in enzyme dosage of approximately 2.5 to 2.7 times (See
EXAMPLE 9
Rhizopus oryzae (RO) lipase and Chromobacterium viscosum (CV) lipase were immobilized onto macroporous acrylic polymer beads (Immobeads™ ChiralVision). Approximately 200 mg of RO lipase were used per gram of beads. A sample of CV lipase-coated beads was irradiated (CVI) to determine the effect of irradiation on potency of immobilized lipase. Approximately 1.7 g of each bead preparation (RO, CV, and CVI) were packed into columns with bed volumes of approximately 5 mL. Infant formula containing DHA and ARA triglycerides was passed over the column at a flow rate of 75 mL/hr. The column eluate was analyzed for DHA and ARA hydrolysis by HPLC. The percent hydrolysis of DHA and ARA triglycerides by CV, CVI, and RO lipases is shown in Table 6.
EXAMPLE 7
Efflux pumps draw energy from hydrolysis of ATP, ions, or protons. Therefore, disruption of these processes could lead to inhibition of efflux pumps. Ethidium bromide (EtBr), a fluorescent dye, is an efflux pumps' substrate and damages on the membrane directly or indirectly lead to the accumulation of EtBr. As shown in
Top products related to «Hydrolysis»
More about "Hydrolysis"
This process is crucial in many biological and industrial applications, including the breakdown of complex carbohydrates, proteins, and other macromolecules.
Synonymous terms include enzymatic cleavage, solvolysis, and aqueous lysis.
Researchers can leverage hydrolysis protocols from trusted sources like Whatman filter papers, RNeasy Mini Kits, and Cellic CTec2 enzymes.
Quantitative analysis can be performed using software like GraphPad Prism 5.
Reagents such as TRIzol, L-8900 polyvinyl alcohol, and sodium hydroxide are commonly used to facilitate hydrolysis.
PubCompare.ai's AI-driven platform empowers researchers to optimize their hydrolysis methods by comparing protocols across literature, preprints, and patents.
This enhances reproducibility, accuracy, and exploration of the most effective kits and approaches.
By leveraging this innovative tool, scientists can improve the reliability of their hydrolysis-based findings.
Try PubCompare.ai today to take your research to new heights.