Opadry clear
Opadry® Clear is a versatile film coating system designed for the pharmaceutical and nutraceutical industries. It is a water-soluble, polymer-based coating that provides a clear, glossy finish to solid oral dosage forms. The primary function of Opadry® Clear is to protect the active ingredient, improve the appearance, and enhance the swallowability of the final product.
Lab products found in correlation
Market Availability & Pricing
Is this product still available?
Get pricing insights and sourcing optionsSpelling variants (same manufacturer)
The spelling variants listed below correspond to different ways the product may be referred to in scientific literature.
These variants have been automatically detected by our extraction engine, which groups similar formulations based on semantic similarity.
Product FAQ
11 protocols using «opadry clear»
Curcuma longa and Boswellia serrata Phytosome
Bergamot and Artichoke Combination Supplement
The film-coated tablets were analyzed for appearance, HPLC assay, uniformity of mass, disintegration time, heavy metals, and microbiological quality.
Control is represented by film-coated tablets with the same shape, color, flavor and taste as the intervention tablets.
The supplementation regimen was 2 daily tablets, one before lunch and one before dinner, for 2 months (as for a 60-day continuous integration). Compliance to the supplementation regimen was defined as the number of tablets actually taken by each subject divided by the number of tablets that should have been taken over the course of the study. Adverse events (AEs) were based on spontaneous reporting by subjects as well as open-ended inquiries by members of the research staff. Safety was assessed by laboratory tests performed at baseline and end of treatment (EoT) detailed below, and by recording volunteered adverse events.
Tailored Copper Gluconate Enteric Coatings
Example 5
A second dissolution target was established for patients with higher stomach pH levels, e.g., patients undergoing proton pump inhibitor treatment concurrent with chemotherapy. The coated copper gluconate minitablets discussed above were further coated with a coating that dissolves as a function of time (e.g., exhibits pH-independent swelling) to provide additional protection against copper gluconate dissolution in the stomach. Coating studies were performed on copper gluconate minitablets coated with: a) Opadry® (4.5% W.G.) and Eudragit® FS 30 D (12% W.G.); b) Opadry® (4.5% W.G.), Eudragit® FS 30 D (12% W.G.) and Eudragit® RL (2%, 4%, and 6% W.G.). Eudragit® RS 30D and Eudragit® RL 30D are pH-independent polymers. Both Eudragit® RS 30D and RL 30D are composed of ethyl acrylate, methyl methacrylate, and a low content of methacrylic acid ester with quaternary ammonium groups. Eudragit® RL 30D contains more ammonium groups than Eudragit® RS 30D, thus it has faster water permeability than Eudragit® RS 30D.
Minitablets were produced as follows: 2 kg of copper gluconate powder blend was prepared and around 1.4 kg of copper gluconate minitablets was obtained for coating trials after the process of tableting. Due to the low weight variation (>95% of tablets within target weight±7.5%) observed on tablets produced by the tablet press, these minitablets were directly used for coating trials without evaluating weight. The minitablets were first coated with 4.5% weight gain of Opadry® Clear (Colorcon, Calif.) and 12% weight gain of Eudragit® FS30D (Evonik, N.J.). The initial dissolution testing was performed as follows: three coated copper gluconate tablets were put in a size 00 Licaps® gelatin capsule prefilled with four disulfiram tablets (10 mg of disulfiram each). These capsules were then packaged in a 60 cc bottles for stability testing. Results are shown in Table 18.
Minitablets pre-coated with Opadry® Clear 4.5% W.G. and Eudragit® FS30D (12% W.G.) were then further coated with 2%-10% weight gain of Eudragit® RL30D (Evonik, N.J.). Dissolution testing was performed and drug recovery was determined every hour between 1 h and 8 h. The results presented in Table 19 and
Dissolution testing was also performed on minitablets coated with pH-sensitive coats that exhibit swelling at higher pH. To assess coat combinations that may provide drug recovery at higher pH, copper gluconate minitablets were coated with Opadry® (3% W.G.) and Eudragit® FS 30 D (4% or 6% W.G.), Table 20. Eudragit® FS 30 D is a pH-dependent coating that allows drug release at pH>7. The copper gluconate minitablets coated with Opadry® (3% W.G.) and Eudragit® FS 30 D (4% W.G.) demonstrated 88.18% release of copper after 2 hours in sodium citrate pH 7.4 and 95.43% release of copper after 2.5 hours in sodium citrate pH 7.4. The copper gluconate minitablets coated with Opadry® (3% W.G.) and Eudragit® FS 30 D (6% W.G.) demonstrated 61.02% release of copper after 2 hours in sodium citrate pH 7.4 and 88.48% release of copper after 2.5 hours in sodium citrate pH 7.4 (Tables 20, 21 and
Further dissolution studies are performed with copper gluconate minitablets coated with 3% Opadry®, 8% Acryl-EZE®, and 2% Eudragit® RL. Copper in the minitablets is intended to be released in small intestine for patients with and without treatment of proton pump inhibitors (PPI)s having a neutral or acidic stomach pH, respectively. Copper release is expected to be slightly earlier in the presence of treatment with PPIs and relatively slower for an acidic stomach. 2% Eudragit® RL coating gives an additional 2-3 hour delay of copper release beyond the 2 hour protection from acid provided by Acryl-EZE® alone. The actual dissolution profile of copper gluconate with 8% Acryl-EZE® and 2% Eudragit® RL should fall into the region between hypothetical curve #1 and #2 (
Formulation and Quality Control of Curcumin-Boswellia Extract
Formulation and Production of Coated Tablets
Process steps and equipment -laboratory batches weighing -balance (Mettler Toledo), wet granulation -fluid bed granulator (Bosch), manual blending, tableting -eccentric press (Riva).
Process steps and equipment -pilot batches weighing -balances and scales (Mettler Toledo), wet granulation -fluid bed granulator (Bosch), blendingblender (Servolift), tableting -rotary tableting press (Fette 102i), oblong punch 18.2/7.7 mm, coatingcoating equipment (O'Hara Technologies).
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!