The largest database of trusted experimental protocols

Trigonox® 25-C75

Manufactured by AkzoNobel

Trigonox® 25-C75 is a laboratory-grade organic peroxide manufactured by AkzoNobel. It is a clear, colorless liquid used as a polymerization initiator in various chemical processes.

Automatically generated - may contain errors

Lab products found in correlation

11 protocols using Trigonox® 25-C75

Example 13

[Figure (not displayed)]

A 1-L jacketed glass reactor was loaded with t-butanol (2381.0 g). A monomer solution of N-vinyl-2-pyrrolidone (41.87 g), acrylic acid (27.19 g), diisobutyl fumarate (43.00 g), methyl methacrylate (37.74 g), isobutyl methacrylate (26.58 g) and 2,2,2-trifluoroethyl methacrylate (3.42 g) was prepared and charged into a syringe pump. Then, 5.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 70° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol. The glass transition temperature (Tg) was measured at 10° C./min and found to be 114° C.

+ Open protocol
+ Expand
2

Synthesis and Characterization of N-Vinyl-2-Pyrrolidone Copolymer

Example 16

[Figure (not displayed)]

An autoclave reactor was loaded with t-butanol (238.0 g). A monomer solution of N-vinyl-2-pyrrolidone (41.06 g), acrylic acid (26.66 g), diisobutyl fumarate (42.17 g), methyl methacrylate (37.01 g), isobutyl methacrylate (26.26 g) and poly(ethylene glycol) methacrylate (average Mn=526) (6.84 g) was prepared and charged into a syringe pump. Then, 5.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 70° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol. The glass transition temperature (Tg) was measured at 10° C./min and found to be 110° C.

+ Open protocol
+ Expand

Example 12

[Figure (not displayed)]

An autoclave reactor was loaded with t-butanol (211.0 g) and isopropanol (27.0 g). A monomer solution of N-vinyl-2-pyrrolidone (41.06 g), acrylic acid (26.66 g), diisobutyl fumarate (42.17 g), methyl methacrylate (37.01 g), isobutyl methacrylate (26.26 g) and t-butylaminoethyl methacrylate (6.84 g) was prepared and charged into a syringe pump. Then, 10.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 69° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

+ Open protocol
+ Expand

Example 22

[Figure (not displayed)]

A 1-L jacketed glass reactor was loaded with t-butanol (173.14 g). A monomer solution of N-vinyl-2-pyrrolidone (53.28 g), acrylic acid (34.56 g), di-n-butyl maleate (54.72 g), methyl methacrylate (48.00 g) and isobutyl methacrylate (34.08 g) was prepared and charged into a syringe pump. Then, 33.3% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 68° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.24 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 3 hours. Additional shots of the initiator were added at t=1, 2, 3 hour (0.24 g each). The reaction temperature then was raised to 75° C. at t=4 hour and additional initiator was charged at t=5, 8 and 10 hour (0.64 g each). After the last initiator addition, stirring continued at 75° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol. The glass transition temperature (Tg) was measured at 10° C./min and found to be 83° C.

+ Open protocol
+ Expand

Example 14

[Figure (not displayed)]

A 1-L jacketed glass reactor was loaded with t-butanol (238.0 g). A monomer solution of N-vinyl-2-pyrrolidone (41.06 g), acrylic acid (26.66 g), diisobutyl fumarate (42.17 g), methyl methacrylate (37.01 g), isobutyl methacrylate (26.26 g) and 2,2,2-trifluoroethyl methacrylate (6.84 g) was prepared and charged into a syringe pump. Then, 5.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 70° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol. The glass transition temperature (Tg) was measured at 10° C./min and found to be 116° C.

+ Open protocol
+ Expand

Example 20

A 1-L glass reactor was loaded with t-butanol (211.0 g) and isopropanol (27.0 g). A monomer solution of N-vinyl-2-pyrrolidone (42.68 g), acrylic acid (27.70 g), diisobutyl fumarate (43.85 g), methyl methacrylate (38.47 g), isobutyl methacrylate (27.30 g) and poly(ethylene glycol) diacrylate (average Mn=700) (1.80 g) was prepared and charged into a syringe pump. Then, 5.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 70° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol. The glass transition temperature (Tg) was measured at 10° C./min and found to be 112° C.

+ Open protocol
+ Expand

Example 19

[Figure (not displayed)]

An autoclave reactor was loaded with t-butanol (238.0 g). A monomer solution of N-vinyl-2-pyrrolidone (41.06 g), acrylic acid (26.66 g), diisobutyl fumarate (42.17 g), methyl methacrylate (37.01 g), isobutyl methacrylate (26.26 g) and methoxy poly(ethylene glycol) methacrylate (average Mn=350) (6.84 g) was prepared and charged into a syringe pump. Then, 5.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 70° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol.

+ Open protocol
+ Expand

Example 6

[Figure (not displayed)]

A 1-L jacketed glass reactor was loaded with t-butanol (238.0 g). A monomer solution of N-vinyl-2-pyrrolidone (42.68 g), acrylic acid (27.70 g), diisobutyl fumarate (43.85 g), methyl methacrylate (38.47 g) and isobutyl methacrylate (27.30 g) was prepared and charged into a syringe pump. Then, 10.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 68° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

+ Open protocol
+ Expand

Example 17

[Figure (not displayed)]

An autoclave reactor was loaded with t-butanol (238.0 g). A monomer solution of N-vinyl-2-pyrrolidone (41.06 g), acrylic acid (26.66 g), diisobutyl fumarate (42.17 g), methyl methacrylate (37.01 g), isobutyl methacrylate (26.26 g) and poly(ethylene glycol) methacrylate (Mn=360) (6.84 g) was prepared and charged into a syringe pump. Then, 5.0% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 70° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.72 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 4 hours. Additional shots of the initiator were added at t=1, 2, 3, 4 hour (0.72 g each). The reaction temperature then was raised to 76° C. at t=5 hour and additional initiator was charged at t=6, 9 and 11 hour (0.72 g each). After the last initiator addition, stirring continued at 76° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

The polymer was found to be at least 50% (w/w) soluble in ethanol and at least 50% (w/w) in t-butanol.

+ Open protocol
+ Expand
10

Synthesis of Copolymer Containing N-Vinyl-2-Pyrrolidone

Example 23

[Figure (not displayed)]

A 1-L jacketed glass reactor was loaded with t-butanol (84.70 g). A monomer solution of N-vinyl-2-pyrrolidone (40.00 g), acrylic acid (30.00 g), di-n-butyl maleate (40.00 g), methyl methacrylate (50.00 g) and isobutyl methacrylate (30.00 g) and t-butylaminoethyl methacrylate (10.00 g) was prepared and charged into a syringe pump. Then, 33.3% of the monomer solution was charged into the reactor. The mixture in the reactor was de-aerated and heated to 68° C. under nitrogen with mechanical stirring at 200 rpm. At t=0, t-butyl peroxypivalate initiator (Trigonox® 25-C75, Akzo Nobel) (0.21 g) was charged into the reactor to initiate the polymerization. Then, the remaining monomer solution in the syringe pump was emptied into the reactor at a constant rate over the next 3 hours. Additional shots of the initiator were added at t=1, 2, 3 hour (0.21 g each). The reaction temperature then was raised to 75° C. at t=4 hour and additional initiator was charged at t=5, 8 and 10 hour (0.57 g each). After the last initiator addition, stirring continued at 75° C. for 4 hours. After cooling, a viscous copolymer solution was discharged into a glass bottle.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!